Pairwise classifier combination using belief functions
نویسندگان
چکیده
In the so-called pairwise approach to polychotomous classification, a multi-class problem is solved by combining classifiers trained to discriminate between each pair of classes. In this paper, this approach is revisited in the framework of the Dempster-Shafer theory of belief functions, a non-probabilistic framework for quantifying and manipulating partial knowledge. It is proposed to interpret the output of each pairwise classifiers by a conditional belief function. The problem of classifier combination then amounts to computing the non-conditional belief function which is the most consistent, according to some criterion, with the conditional belief functions provided by the classifiers. Experiments with various datasets demonstrate the good performances of this method as compared to previous approaches to the same problem.
منابع مشابه
Applying Pairwise Fusion Matrix on Fusion Functions for Classifier Combination
We propose a new classifier combination scheme for the ensemble of classifiers. The Pairwise Fusion Matrix (PFM) constructs confusion matrices based on classifier pairs and thus offers the estimated probability of each class based on each classifier pair. These probability outputs can then be combined and the final outputs of the ensemble of classifiers is reached using various fusion functions...
متن کاملManaging decomposed belief functions
In this paper we develop a method for clustering all types of belief functions, in particular nonconsonant belief functions. Such clustering is done when the belief functions concern multiple events, and all belief functions are mixed up. Clustering is performed by decomposing all belief functions into simple support and inverse simple support functions that are clustered based on their pairwis...
متن کاملClustering decomposed belief functions using generalized weights of conflict
We develop a method for clustering all types of belief functions, in particular non-consonant belief functions. Such clustering is done when the belief functions concern multiple events, and all belief functions are mixed up. Clustering is performed by decomposing all belief functions into simple support and inverse simple support functions that are clustered based on their pairwise generalized...
متن کاملCombining Classifiers through Triplet-Based Belief Functions
Classifier outputs in the form of continuous values have often been combined using linear sum or stacking, but little is generally known about evidential reasoning methods for combining truncated lists of ordered decisions. In this paper we introduce a novel class-indifferent method for combining such a kind of classifier decisions. Specifically we model each output given by classifiers on new ...
متن کاملRanking from Pairwise Comparisons in the Belief Functions Framework
The problem of deriving a binary relation over alternatives based on paired comparisons is studied. The problem is tackled in the framework of belief functions, which is well-suited to model and manipulate partial and uncertain information. Starting from the work of Tritchler and Lockwood [8], the paper proposes a general model of mass allocation and combination, and shows how to practically de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 28 شماره
صفحات -
تاریخ انتشار 2007